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Abstract
We introduce and discuss a new class of solutions of the Dorokhov–Mello–
Pereyra–Kumar (DMPK) equation in which some of the eigenvalues are
grouped into clusters which are conserved in the asymptotic large distance
limit (i.e. as the length of the wire increases). We give an explicit expression
for the asymptotic expansion of these solutions and suggest some possible
applications. In particular, these new solutions could be useful for avoiding the
quasi-one-dimensional constraint in the DMPK equation and for studying the
crossover between the metallic and insulating phases.

1. Introduction

One of the most interesting tools for describing the electron transport properties of quantum
wires is the so called Dorokhov–Mello–Pereyra–Kumar (DMPK) equation [1]. This equation
describes the evolution of the joint probability distribution of the transmission eigenvalues
P({λi }) as the length of the wire increases and has been the subject of intense study in the
last few years [2–11]. Among the several remarkable features of this equation, the most
interesting one is that it can be exactly mapped onto the radial part of the Laplace–Beltrami
operator of suitable symmetric spaces [2]. Thanks to this mapping it is possible to write the
Green function of the DMPK equation in terms of the so called zonal spherical functions (ZSFs)
of the corresponding symmetric spaces. In the β = 2 case the ZSF can be written explicitly
in terms of ordinary hypergeometric functions [12], thus leading to an exact solution of the
DMPK equation [4], while for β = 1, 4 one can rely on a powerful asymptotic expansion due
to Harish-Chandra [13]. This approach leads to a rather involved expression for P({λi }) which
however drastically simplifies in the two limits of very short wires (metallic regime) and very
long wires (insulating regime), thus allowing us to evaluate all the quantities of interest (see [4]
and [5] for a detailed discussion).

However, despite these remarkable results there are two major drawbacks in the DMPK
approach to quantum wires. The first is that the DMPK description only holds in the (quasi-)
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one-dimensional limit. The second is that the above mentioned solution (even in the simpler
β = 2 case) does not allow us to study the intermediate region between the metallic and the
insulating regimes (the so called ‘cross-over regime’) where no simplifying approximation is
allowed. This region has recently attracted much interest since both numerical and analytical
results seem to indicate a rather non-trivial (with possibly a non-analytic point [6]) behaviour
of P({λi }) exactly in this regime [7–9].

In the last few years several interesting approaches have been proposed to overcome these
problems. Various generalizations of the DMPK equation have been suggested [11, 10] to
avoid the quasi-one-dimensional limit. However, in all these generalized equations most of
the nice properties of the DMPK equation are lost (mainly due to the fact that the description in
terms of symmetric spaces is lost) and only a little information on the expected joint probability
density of the transmission eigenvalues can be obtained. The aim of this paper is to propose
a completely different approach to these problems, which instead fully exploits the power of
the symmetric space structure which is behind the DMPK equation. Instead of modifying the
DMPK equation, we shall keep it unchanged, but shall look for a set of special solutions (with
non-trivial initial conditions) which break the isotropy ansatz. To this end we shall use the fact
that the DMPK equation can be mapped into the evolution operator of a class of 1D quantum
integrable models known as Calogero–Sutherland (CS) models (for a review see [14]). As a
consequence of their exact integrability it is possible to show that in these models, besides the
well known symmetric solution, a wide class of non-trivial (but exact) solutions exist in which
the particles are grouped into clusters which survive in the asymptotic limit. The clusters
of particles become, once the mapping with the DMPK equation is performed, clusters of
eigenvalues. The exact integrability of the CS model ensures that this asymmetric distribution
of eigenvalues survives in the asymptotic limit and the remarkable properties of the underlying
symmetric space allow us to write explicitly such an asymptotic expansion.

This paper is organized as follows: in section 2 we shall recall some known results on
quantum transport, focusing on the DMPK equation in order to fix notation. In section 3 we
shall review the main concepts associated with CS models and the mathematical tools applied
in order to find their solutions. In section 4 we shall describe the new class of solutions of the
DMPK equation and in section 5 we shall give some hints on how these new solutions could
be used in order to address the open problems mentioned in the introduction.

2. Quantum transport in a wire and DMPK equation

A mesoscopic conductor can be modelled as a disordered region located between two ideal leads
connected to two electron reservoirs; at very low temperatures, frequencies and voltages the
scattering phenomena inside the wire are supposed to be elastic,and the electron wavefunctions
are assumed to be phase coherent. Given a quantum wire of length L and width W (L � W ) it
is possible to find a finite but large number N of Fermi channels associated with the conduction
electrons. Adopting the notation used in [1], we call the N-dimensional vectors associated
with the amplitudes of the incoming and outgoing waves on the left of the wire I and O
respectively and the corresponding vectors on the right I ′ and O ′.

The scattering phenomena inside the wire can be described by means of the 2N-
dimensional transfer matrix M , which connects the amplitudes of each channel located on
the left to the ones on the right of the wire:

M

(
I
O

)
=

(
O ′
I ′

)
. (1)
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The matrix M can be decomposed in a radial and an angular part according to the polar
decomposition [1]:

M =
(

u1 0
0 u3

) ( √
1 + �

√
�√

�
√

1 + �

) (
u2 0
0 u4

)
≡ U�V (2)

with ui N × N unitary matrices, which assume the role of angular coordinates, and � a real
diagonal matrix with non-negative elements {λ1 . . . λN }, as radial coordinates.

In [1] the general symmetries of the system (time reversal and/or rotational symmetry) fix
the matrix M to a particular Lie group:

• if time reversal symmetry (TRS) is present and there is no spin-rotational symmetry (SRS)
inside the wire M ∈ Sp(2N, R);

• if TRS and SRS are both present inside the wire M ∈ SO∗(4N);
• if TRS is absent M ∈ SU(N, N).

Experimentally, these three symmetry classes correspond to the presence or absence of a
magnetic field (which breaks the TRS) and to the relevance of the spin–orbit interaction term
(which breaks SRS) inside the wire.

The general symmetries of the transfer matrix lead to a possible formulation of the problem
by means of the tools offered by random matrix theory; each symmetry class is assigned to an
ensemble of transfer matrices, associated with a parameter β which can be interpreted as the
number of degrees of freedom of each matrix element.

In the framework of the transfer matrix approach to quantum wires the DMPK equation [1]
describes the evolution of the probability distribution PL of the transmission eigenparameters
{λi } as a function of the reduced length s = L/ l (L being the length of the wire and l the mean
free path associated with the electron):

∂ PL

∂s
= 2

γ

N∑
i=1

∂

∂λi
λi (1 + λi )Jβ

∂

∂λi
J −1
β PL ≡ DPL (3)

with

γ ≡ β N + 2 − β

where N is the number of Fermi channels associated with the conduction electrons, β =
{1, 2, 4} is the parameter associated with the symmetry of the system, Jβ is the Jacobian from
the space of the whole matrix M to the space of the eigenparameters {λi },

Jβ({λi }) =
N∏

i=1

N∏
j=i+1

|λi − λ j |β

and D is the DMPK operator. Given the probability distribution PL , the conductance of
the wire can be obtained by means of the Landauer formula [15]. It is important to stress
that the construction of the DMPK equation requires an isotropy ansatz among the channels.
Physically, this implies that the finite time required for the electron to be scattered in the
transversal direction is assumed to be infinitesimally small, and this assumption fits only for a
quasi-1D wire.

The transfer matrix ensembles which are at the basis of the DMPK equation are very
interesting from a mathematical point of view since they can be mapped on a suitable symmetric
space of negative curvature (see [2] and [3] for a detailed discussion). Similar representations
in terms of symmetric spaces also exist for other random matrix theories, but they usually
involve symmetric spaces of zero or positive curvature (see [3]). The negative curvature of
the space is a peculiar feature of the transfer matrix ensembles and has relevant consequences
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Table 1. Symmetry classes for a quantum wire.

β TRS SRS M X

1 Yes Yes Sp(2N, R) Sp(2N, R)/U(N)

2 No Yes SU(N, N) SU(N, N)/SU(N) ⊗ SU(N) ⊗ U(1)

4 Yes No SO∗(4N) SO∗(4N)/U(2N)

on the quantum wire applications of these ensembles. For instance, it can be shown that
the eigenparameters {λi } appearing in formula (2) inside � exactly correspond to the radial
coordinates of the symmetric space while the ‘radius’ of the space can be mapped (with a
suitable normalization) onto the length of the wire. The fact that the radial coordinates in a
negative curvature symmetric space flow to infinity as the radius increases then becomes in
the quantum wire context the well known result that as the length of the wire increases the
wire moves from a conducting to an insulating regime. We shall discuss this mapping in great
detail in the next section.

Tables 1 and 2 contain the main symmetry classes associated with the parameter β and
the corresponding symmetric space X associated with the eigenparameters {λi }.

3. Calogero–Sutherland models: mapping of the DMPK equation on a symmetric space
and solutions

In order to address the symmetric space description of quantum wires we need an intermediate
ingredient, i.e. the well known CS models (for a review see [14]). These models describe
N interacting particles in one dimension, and are characterized by a Hamiltonian that can
be mapped, for certain values of the coupling constants, into the radial part of the Laplace–
Beltrami operator (B in the following) on a suitable symmetric space X . This operator is the
generalization of the familiar Laplace operator describing free diffusion in the Cartesian space
and it describes free diffusion on a generic manifold X (in our case X is one of the non-compact
symmetric spaces X of tables 1 and 2, characterized by a root lattice structure of type CN ).

The action of the Laplace–Beltrami operator can be formulated in terms of the following
eigenvalue equation:

B�k(x) = k2�k(x); (4)

the eigenfunctions �k(x) are known in the literature as ZSF (for a review see [3]).
The connection between the CS Hamiltonian and the symmetric space (in particular the

root lattice associated with the symmetric space) and the mapping of the CS Hamiltonian
into the radial part of the Laplace–Beltrami operator is the key point which determines the
integrability of the model.

The general form of the CS Hamiltonian is

H = 1

2

n∑
i=1

p2
i +

∑
α∈	+

g2
αv(xα) x = (x1, . . . , xN ), pi = −i

∂

∂xi
, xα = (x, α) (5)

where 	+ is the set of positive roots α associated with the space X , (x, α) denotes the scalar
product, v(xα) is the interaction potential and gα is a coupling constant which depends on the
roots as

g2
α = mα(mα − 2)|α2|

8
(6)



A new class of solutions of the DMPK equation 6849

Table 2. Symmetric spaces associated with the transfer matrix and their root multiplicities.

β X mo ml ms

1 Sp(2N, R)/U(N) 1 1 0
2 SU(N, N)/SU(N) ⊗ SU(N) ⊗ U(1) 2 1 0
4 SO∗(4N)/U(2N) 4 1 0

where mα is the root multiplicity in the space X and |α2| its length; relation (6) is a necessary
constraint for the model to be solvable. The particular CS Hamiltonian we are interested in
contains a potential of the form

v(xα) = 1

sinh2 xα

. (7)

The relevant point for the present analysis is that if we choose, as in [4],

λi = sinh2 xi (8)

the DMPK operator can be mapped exactly onto a CS Hamiltonian with a potential of the
type (7) and the symmetries of one of the symmetric spaces listed in tables 1 and 2.

These spaces are characterized by root lattices (denoted as CN ) composed both by ordinary
roots (whose multiplicity mo = 1, 2 or 4 can be identified with the β parameter which encodes
the symmetry properties of the matrix model) and long roots with multiplicity m l = 1 which
are responsible for the peculiar properties of the eigenvalues near the boundary λ ∼ 0 (see [2,
3] for further details). Given the set {e j} of linearly independent versors associated with the
space, ordinary roots are commonly written as α = ±e j ± ei ( j 	= i = 1, N) and long roots
correspond to α = ±2e j ( j = 1, N).

These root lattices are characterized by a Z2 symmetry, i.e. they are invariant under
reflection. This means that the origin plays a special role. Indeed, most of the results we
shall discuss in the following can be more easily understood by introducing an additional
(fictitious) eigenvalue which is kept fixed in the origin and interacts (with a standard repulsive
interaction mediated by the long roots of the lattice) with all the other eigenvalues.

The complete series of steps involved in this mapping can be found in [2, 3]. In particular,
it turns out that the radial part of the Laplace–Beltrami operator B on the symmetric space X
is related to the DMPK evolution operator D in equation (3) by

D = 1

2γ
ξ2(x)Bξ−2(x) (9)

where the function ξ(x) is given by

ξ(x) =
∏
i< j

|sinh2 x j − sinh2 xi |β/2
∏

i

|sinh 2xi |1/2 (10)

and the operator B depends only on the radial coordinates {xi} of the space according to the
relation

B = [ξ(x)]−2
N∑

i=1

∂

∂xi
[ξ(x)]2 ∂

∂xi
. (11)

As a consequence, if �k(x), x = {x1, . . . , xN }, k = {k1, . . . , kN } is an eigenfunction of
B with eigenvalue k2, then ξ(x)2�k(x) will be an eigenfunction of the DMPK operator with
eigenvalue k2/(2γ ).

Once the eigenfunctions of the DMPK operators are known it is rather straightforward to
construct the Green function and use it to solve the DMPK equation. The solution turns out to
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be rather involved, but it drastically simplifies in the two interesting limits of insulating (small
values of k) and metallic (large values of k) regimes. It is important to stress at this point that
even if an explicit form is known only for the special case β = 2, a general and powerful
asymptotic expansion for large values of x exists for all the possible symmetric spaces [2, 3].
This asymptotic expansion turns out to be enough for the construction of the two (insulating
and conducting) limiting solutions. Its explicit form is

�k(x) ∼ 1

ξ(x)

(∑
r∈W

c(rk)ei(rk,x)

)
, (12)

where rk is the vector obtained acting with r ∈ W on k, W is the Weyl group associated with
the root system of the symmetric space and (k, x) denotes the scalar product.

All the information related to the underlying symmetric space is encoded in the function
c(k) which is given by

c(k) =
∏

α∈	+

cα(k) (13)

with

cα(k) = �(i(k, α)/2)

�(mα/2 + i(k, α)/2)
(14)

where � denotes the Euler gamma function, α is a generic root belonging to the root lattice
which defines the symmetric space, mα denotes its multiplicity and the product is restricted to
the sublattice 	+ of positive roots only.

4. ‘Clustered’ solutions of the DMPK equation

In the previous section the integrability of the DMPK equation was stressed in order to write
explicitly, at least in the asymptotics, its solutions. In several physical applications (see next
section) it would be interesting to study solutions of the DMPK equation in which the symmetry
among the N eigenvalues is broken. The aim of this paper is to show how to exploit again the
integrable nature of the DMPK equation in order to go beyond the isotropic solutions obtained
in [2]. The key point is that, given the integrability of the DMPK equation, its solution can
be written even if non-trivial initial conditions are assumed; this observation allows us to
construct non-isotropic solutions starting from an equation which is isotropic by construction.
The simplest way to obtain this is to impose that some of the eigenvalues form a ‘cluster’
(i.e. the distances among them remain finite while the distances with respect to the other ones
go to infinity), or more generally a set of independent clusters; the peculiar form of the DMPK
equation ensures that such solutions exist and survive in the asymptotic limit. These solutions
obviously require suitably chosen initial conditions, which are degenerate in the whole phase
space. The main goal of this paper is to show that these clustered solutions also admit an
asymptotic expansion similar to that of equation (12). Given this expansion, one can then
obtain the probability density P({xn}, s) in the presence of these clusters in a way analogous
to the isotropic case. We shall consider below some possible applications of this result.

Let us see these solutions in more detail. Let us assume the cluster to be composed by the
first N ′ < N eigenvalues. This means

|xi − x j | < ∞, i, j = 1, . . . , N ′ (i 	= j).

|xi − x j | → ∞, i = 1, . . . , N; j = N ′ + 1, N (i 	= j).
(15)
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In the symmetric space framework we can identify the cluster by selecting a subset of the root
system associated with the space. Let � be the system of simple roots associated with X , and
�′ be a subsystem of simple roots which satisfies the inequality

�′ =
{
α ∈ �/ lim

|x|→∞
xα < ∞

}
(16)

where xα = (x, α).
There are at this point two possibilities. Since � is a CN type lattice then �′ can be again

of type CN (in this case it must also contain the long root and the ordinary roots must be chosen
so as to keep the Z2 symmetry of the lattice) or it can be of type AN . In both cases from the
ordinary roots of �′ one can construct the differences xα = xi − xi+1 which correspond to
the nearest neighbour distances between some of the eigenvalues. From the definition of �′
these distances must remain finite in the asymptotic limit so that �′ defines a cluster (if it is
connected) or a set of clusters otherwise. If the cluster is of type AN there is no other constraint
and the cluster can in principle flow to an infinite distance from the origin (while keeping a
finite distance among the eigenvalues inside the cluster). If the cluster is of type CN in contrast,
the eigenvalues are bounded (by the lattice structure of �′ itself) to stay within a finite distance
from the origin. In the following we shall denote by x̃ the set of radial coordinates outside the
cluster and by x ′ the ones inside the cluster.

The asymptotic expansion of the ZSFs in the presence of such a cluster was obtained a
few years ago by Olshanetsky in [16]. It turns out to be a rather natural generalization of the
Harish-Chandra result of equation (12):

�k(x) ∼
∑

r∈W/W ′
cz( ˜rk)ei(r̃k,x̃)�(rk)′(x ′) (17)

where �k(x) is given by the product ξ(x)�k(x). In this formula (rk)′ denotes the projection
of the vector rk on the sublattice �′ and ˜rk its complement, ξ(x) is given by equation (10) and

cz(k) =
∏

α∈	+/	′+
cα(k) (18)

where 	′+ is the set of positive roots associated with the cluster, and the W ′ which appears in
the coset W/W ′ is the Weyl group associated with the cluster. This expression is apparently
simple but it is highly non-trivial. Notice for instance that the symmetrization with respect to
the Weyl coset W/W ′ acts not only on the part containing the coordinates x̃ but also on the
momenta of the ZSF describing the cluster coordinates �(rk)′(x ′). This means that the particles
inside the cluster do not move independently in a section of the whole space but they ‘feel’ the
presence of the other particles and are subject to the symmetry group of the remaining space.
It is interesting to notice that the above construction could also be formulated in the framework
of the original transfer matrix ensemble (i.e. before diagonalizing the transfer matrix). The
clustered solutions correspond in this framework to peculiar boundary limits of the original
symmetric spaces (which are known in the mathematical literature as Martin boundaries [17,
18]). The precise characterization of these boundaries is outside the scope of the present paper.
We plan to address this issue in a future publication.

Let us see two examples which may hopefully clarify the issue.

Example 1. A CN type cluster composed by the first (N − 1) eigenvalues plus an isolated
eigenvalue which flows to infinity, i.e. (see equation (16))

|xi − x j | < ∞, i, j = 1, . . . , N − 1 (i 	= j)

|xi − xN | → ∞, i = 1, . . . , N − 1.
(19)
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Then the asymptotic form of the ZSF, and of the related product function �k(x), is

�k(x) ∼
N∑

j=1

cz(k j)�k̂ j
(x ′)eik j xN (20)

where �k̂ j
(x ′) is associated with the ZSF of the CN−1 symmetric space of the cluster,

k̂ j ≡ (k1, · · · k j−1, k j+1, · · · kN ) denotes the collection of (N − 1) momenta in which k j is
omitted and cz(k j) is given in this case by the product of the cα(k) functions over all the
(positive) roots of type α = ±e j ± el (∀ l 	= j), α = 2e j ( j fixed). From this expression it
is straightforward to construct iteratively the ZSF in which two or more eigenvalues flow to
infinity.

Example 2. A CN type cluster composed by the first two eigenvalues, x1 and x2, while the
other (N − 2) flow to infinity.

�k(x) ∼
∑
s∈Ŵ

cz(k)�s(1),s(2)(x1, x2)e
i
∑N

r=3 ks(r) xr (21)

where Ŵ ≡ W/W ′ is the coset of Weyl groups associated with the whole set of eigenvalues and
with the cluster respectively, the subscript of the two-particle wavefunction �s(1),s(2)(x1, x2)

identifies the two momenta with which this function is associated and cz(k) in this case is
the product of the cα(k) over all the positive roots of type 2es(m), 2es(n) (with m, n > 2) and
±es(m) ± es(n) (with the only exclusion of the combination (m, n) = (1, 2) or (2, 1)).

5. Applications

Among the various possible uses of these new solutions we see in particular four interesting
applications.

(1) We can use them to model systems in which the number of open channels is reduced by
the structure of the wire itself (see the wide–narrow–wide geometry of [19])3. In this case,
one could consider a configuration formed by a CN type cluster (bounded to the origin)
made of N ′ eigenvalues and let the remaining N − N ′ eigenvalues flow to infinity (see
example 1 above). One can choose N ′ and s (the reduced length of the wire) so as to keep
the cluster in the metallic regime, while the other eigenvalues are in the insulating one and
do not contribute to the wire conductance.

(2) The same configuration as discussed above could be used to provide a simple but effective
way to improve our description of real quantum wires. While in the previous example
N ′ was fixed (being the number of the open channels in the narrow part of the wire) one
could easily generalize the example keeping N ′ as an additional degree of freedom which
can be varied so as to take into account the effect of external parameters like the amount
of disorder in the wire. The rationale behind this proposal is the well known idea [20]
that in a generic conductor only a fraction (which depends on the disorder) of its channels
is open and the isotropy anzatz should be a very good approximation for them, while the
non-trivial (i.e. non-one-dimensional)behaviour of the conductance is due to the variation
in the number of open channels.

(3) The previous picture could be refined choosing configurations with more than one cluster,
each cluster being characterized by a different distance at which the crossover between
metallic and insulating regimes occurs (fixed by the only free parameter which we have in

3 We thank C W Beenakker for suggesting this possibility to us.
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these generalized solutions, that is the number of eigenvalues of each cluster). This multi-
cluster structure could be used in order to evade the isotropy ansatz (this was indeed the
main reason for the present investigation). In order to obtain the multi-cluster configuration
it is sufficient to choose a not connected subset of roots �′ which satisfies the condition
given in equation (16). The roots belonging to �′ correspond to a set of coordinates x ′
which are grouped into different clusters; the number of clusters Nc and their width N ′

i are
uniquely determined by the choice of the not connected root lattice �′. The asymptotic
expansion given in the general form of equation (17) can then be applied in order to find
the proper solutions of this multi-cluster configuration.
The isotropic symmetric space characterized by N radial coordinates in this case is mapped
into an anisotropic model in which the Nc channels correspond to Nc clusters (each cluster
containing a different number N ′

i of coordinates); this reconfiguration should ensure a
different probability for the electron to be scattered among the different channels. It is
important to stress once again that in our proposal this goal is reached by properly choosing
the initial conditions, while the DMPK equation (with all its remarkable properties) is
kept unchanged. This means, as a side remark, that the DMPK equation still depends on
only one parameter i.e. the ratio N/s. The Nc parameters which appear in the special
solutions in which we are interested (see the general solution and the examples discussed
in section 4) come from the initial conditions and simply consist of the list of the sizes N ′

i of
the Nc clusters. In this type of solution the Nc channels will encounter the metal–insulator
transition at different lengths of the wire; this feature suggests that the N ′

i /s parameters
can be related to the different mean free paths associated with the channels. This picture
recalls the ‘non-equivalent channels model’ proposed by Mello and Tomsovic in [10] but
differs from it since our proposal (as mentioned above) does not require us to modify the
DMPK equation.

(4) An interesting independent application is related to the recent attempt [8, 9] to describe the
crossover between the metallic and insulating regime in quasi-1D systems by separating
out the first [8] or the first two [9] eigenvalues and considering the rest as a continuum
in the solution of the DMPK equation. This approximation recalls the clustered solutions
that we have discussed in this paper (see in particular example 2). The fact that these
clustered configurations are indeed exact solutions of the DMPK equation (albeit with
non-trivial initial conditions) may explain the remarkable stability of the saddle point
solution noticed in [9] and could offer an independent justification for the approach.
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Muttalib K A and Wölfle P 1999 Ann. Phys., Lpz. 8 753

[9] Muttalib K A, Gopar V A and Wölfle P 2002 Phys. Rev. B 66 174204
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